Write a program to convert infix to postfix in C Language

Understanding and Implementing Infix to Postfix Conversion in C

Introduction:
In the realm of computer science and programming, infix and postfix notations are commonly used to represent mathematical expressions. While infix notation is the standard mathematical notation where operators are placed between operands, postfix notation, also known as Reverse Polish Notation (RPN), places operators after their operands. Converting expressions from infix to postfix is a fundamental operation in parsing and evaluating mathematical expressions. In this blog post, we'll delve into the concept of infix to postfix conversion and demonstrate how to implement a program in the C programming language to perform this conversion.

Understanding Infix and Postfix Notations:
Infix notation is the conventional way of writing mathematical expressions, such as "a + b * c". In this notation, operators are placed between operands.
Postfix notation, on the other hand, places operators after their operands. For example, the infix expression "a + b * c" would be written as "abc*+" in postfix notation.

Conversion from Infix to Postfix:
Converting infix expressions to postfix involves rearranging the operators and operands based on their precedence and associativity rules. This process can be performed using a stack data structure to keep track of operators and their precedence.

Implementing Infix to Postfix Conversion in C:
Now, let's see how we can implement a program in C to convert infix expressions to postfix notation.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_SIZE 100
// Function to check if a character is an operator
int isOperator(char ch) {
    return (ch == '+' || ch == '-' || ch == '*' || ch == '/');
}
// Function to get the precedence of an operator
int precedence(char ch) {
    switch(ch) {
        case '+':
        case '-':
            return 1;
        case '*':
        case '/':
            return 2;
        default:
            return 0;
    }
}
// Function to convert infix expression to postfix notation
void infixToPostfix(char infix[], char postfix[]) {
    int i = 0; // Index for infix expression
    int j = 0; // Index for postfix expression
    char stack[MAX_SIZE]; // Stack to hold operators
    int top = -1; // Top of the stack
    // Iterate through the infix expression
    while (infix[i] != '\0') {
        // If the character is an operand, append it to the postfix expression
        if (!isOperator(infix[i])) {
            postfix[j] = infix[i];
            j++;
        }
        // If the character is an operator
        else {
            // Pop operators from the stack with higher precedence and append them to the postfix expression
            while (top >= 0 && precedence(stack[top]) >= precedence(infix[i])) {
                postfix[j] = stack[top];
                j++;
                top--;
            }
            // Push the current operator onto the stack
            top++;
            stack[top] = infix[i];
        }
        i++;
    }
    // Pop remaining operators from the stack and append them to the postfix expression
    while (top >= 0) {
        postfix[j] = stack[top];
        j++;
        top--;
    }
    postfix[j] = '\0'; // Add null terminator to the end of the postfix expression
}
int main() {
    char infix[MAX_SIZE];
    char postfix[MAX_SIZE];
    // Input the infix expression from the user
    printf("Enter an infix expression: ");
    scanf("%s", infix);
    // Convert infix expression to postfix notation
    infixToPostfix(infix, postfix);
    // Display the postfix expression
    printf("Postfix expression: %s\n", postfix);
    return 0;
}

Conclusion:
In this blog post, we've explored the concept of infix to postfix conversion and demonstrated how to implement a program in the C programming language to perform this conversion. By understanding the principles behind infix and postfix notations and employing the provided code, you can now convert infix expressions to postfix notation programmatically, enabling you to manipulate and evaluate mathematical expressions effectively. Whether you're a beginner or an experienced programmer, mastering such fundamental operations is crucial for developing robust and versatile software solutions.

Comments